크래머 법칙(Cramer's rule) - 연립 일차 방정식 해를 구하는 공식
미지수가 적을 때는 각 방정식을 정리하여 대입하여 해를 구하는 방법을 선택할 수 있겠지만, 미지수가 많을 경우 이러한 방법을 사용하여 해를 구하는 방법은 조금 무리가 있을 것이다. 미지수가 여러개인 연립 일차 방정식들이 주어졌을 때, 크래머 법칙(Cramer's rule, 혹은 크라메르 법칙)을 사용하면 비교적 간단하게 미지수들의 해를 구할 수가 있다. (1)과 같은 식에서 A가 n×n인 정방행렬이며, 행렬식이 0이 아닌 비특이행렬이라고 하자. 이를 연립 방정식의 형태로 표현하자면 아래의 (2)와 같은 모양이 된다. 즉, (2)의 식을 행렬 A, B, x로 표현을 하면 (1)의 식과 같은 모양(b1, b2, ..., b3를 행렬B라 , a11, a12, ..., ann을 행렬A, x1, x2, ..., ..